
A rigorous real-time Feynman path integral and propagator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 9215

(http://iopscience.iop.org/0305-4470/33/50/307)

Download details:

IP Address: 171.66.16.124

The article was downloaded on 02/06/2010 at 08:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/50
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 9215–9239. Printed in the UK PII: S0305-4470(00)11543-4

A rigorous real-time Feynman path integral and propagator

Ken Loo
PO Box 9160, Portland, OR 97207, USA

E-mail: look@sdf.lonestar.org

Received 2 February 2000, in final form 5 September 2000

Abstract. We will derive a rigorous real-time propagator for the non-relativistic quantum
mechanical L2 transition probability amplitude and for the non-relativistic wavefunction. The
propagator will be given explicitly in terms of the time evolution operator. The derivation will be
for all self-adjoint non-vector potential Hamiltonians. For systems with potentials that carry at
most a finite number of singularity and discontinuities, we will show that our propagator can be
written in the form of a rigorous real-time, time-sliced Feynman path integral via improper Riemann
integrals. We will also derive the Feynman path integral in a non-standard analysis formulation.
Finally, we will compute the propagator for the harmonic oscillator using the non-standard analysis
Feynman path-integral formulation; we will compute the propagator without using any knowledge
of the classical properties of the harmonic oscillator.

1. Introduction

Since Feynman’s invention of the path integral, much research have been done to make the real-
time Feynman path integral mathematically rigorous (see [6, 9, 10, 13, 18–20]). In physics, the
real-time, time-sliced Feynman path integral is formally given by (see [3–5])

K̄t (�x, �x0) = lim
k→∞

wn,k

∫
rR(k−1)n

exp

[
iε

h̄
Sk (�x = �xk, . . . , �xo)

]
d�x1 . . . d�xk−1

�x0 = �q0 �xk+1 = �q ε = t

k
wn,k =

( m

2iπh̄ε

)n(k+1)/2

S {�xk+1 . . . �x0} =
k+1∑
j=1

[
m

2

( �xj − �xj−1

ε

)2

− V
(�xj )

]
[

exp

(−itH̄

h̄

)
ψ

]
(�x) =

∫
K̄t (�x, �x0) ψ

(�x0
)

d�x0[
exp

(−itH̄

h̄

)
δ (�y − �x0)

]
(�x) = K̄t (�x, �x0)

(1.1)

where the integral of the first equation in (1.1) is an improper Riemann integral, and the last
line in (1.1) is the evolution operator operating on the dirac delta function’s �y variable. It is
well known that mathematical rigour of (1.1) is lacking, and we know that an integral over
path space in real time cannot be well defined with measure theory (see [6]).

The problems with the objects in equation (1.1) are that we do not know whether the
improper Riemann integrals exist, we do not know whether the k limit exists, and we do not
know whether the Feynman path integral in (1.1) produces the propagator. In his paper (see [11],
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footnote 13), Feynman observed that by using wavefunctions, ill-defined oscillatory integrals
can be given a rigorous meaning. With this observation, we will reformulate equation (1.1)
into rigorous mathematical objects that represent the propagator.

From mathematics, we know that for some values of t , some propagators must be treated
as distributions; the harmonic oscillator is one such example (see [6, 7]). Also, K̄t (�x, �x0) given
in (1.1) is a function of �x and �x0. Thus, it is natural to consider K̄t as a tempered distribution on
the class of Schwartz test functions S (Rn × R

n). The space of square-integrable functions is a
subset of the space of tempered distributions. If we consider the wavefunction as a distribution
and take its inner produce with a test function, we can formally use (1.1) and obtain∫

Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x =

∫
Rn

φ(�x)
∫

K̄t (�x, �x0) ψ
(�x0
)

d�x0 d�x

=
∫

K̄t (�x, �x0) φ(�x)ψ
(�x0
)

d�x d�x0. (1.2)

Equation (1.2) will form theorem 2.5.
As for the formal evolution of the delta function in (1.1), let us consider formally the

following equation:

lim
η,γ→0

K(�x, �x0, η, γ, t) = lim
η,γ→0

∫
Rn

Gx(�y, η)
[

exp

(−itH̄

h̄

)
F�x0(�z, γ )

]
(�y) d�y

=
∫

δ (�x − �y)
[

exp

(−itH̄

h̄

)
δ (�z − �x0)

]
(�y) d�y

=
[

exp

(−itH̄

h̄

)
δ (�z − �x0)

]
(�x) (1.3)

where the functions K,F and G are given by equation (2.1). If we are going to take
the propagator as a distribution in the sense of (1.2), we might consider the limit in (1.3)
as a distribution limit. Doing so produces theorem 2.2 and in some sense theorem 2.4
(equations (2.2), (2.3), (2.6a) and (2.6b)).

In mathematics, there exists a rigorous formulation for a real-time, time-sliced Feynman
path integral (see [7, 8]), it reads[

exp

(−itH̄

h̄

)
ψ

]
(�x) = lim

k→∞
wn,k

∫
Rkn

exp

[
iε

h̄
Sk (�xk = �x, . . . , �x0)

]
ψ
(�x0
)

d�x0 . . . d�xk−1

(1.4)

where ψ ∈ L2, the integral in (1.4) is an improper Lebesgue integral with convergence taken in
the L2 topology, and the k limit in (1.4) is taken in the L2 topology. Comparing (1.4) and (1.1),
we see that rigorously we have a Feynman path integral that has all convergence taken in L2

topology while in physics, a formally improper Riemann integral and pointwise convergence
are favoured.

What we will do is convert all convergences in L2 topology into pointwise convergences
in t . The idea is to use a wavefunction as a convergence factor as observed by Feynman. For
simplicity, suppose f (x) ∈ L2(R), g(x, y) ∈ L2 (R × R) are such that they are bounded and
continuous. Furthermore, suppose that both

h(x) =
∫ b

−a

g(x, y) dy

p(x) = lim
a,b→∞

∫ b

−a

g(x, y) dy

(1.5)
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are in L2 (R) as a function of x. In (1.5), we take the integrals to be Lebesgue integrals and
the limits are taken independently of each other in the L2 norm. Note that for p(x), we can
interpret the integral as an improper Lebesgue integral with convergence in the L2 topology.
Let us denote by χ[−c,d] the characteristic function on [−c, d]. Schwarz’s inequality then
implies∣∣∣∣
∫

R

f (x)p(x) dx −
∫ d

−c

∫ b

−a

f (x)g(x, y) dx dy

∣∣∣∣
� ‖f ‖2‖p − h‖2 + ‖f − χ[−c,d]f ‖2‖h‖2 → 0. (1.6)

Thus, we can write∫
R

f (x)p(x) dx = lim
a,b,c,d→∞

∫ d

−c

∫ b

−a

f (x)g(x, y) dx dy (1.7)

where the limits are all taken independently of each other. Since f and g are bounded and
continuous, the Lebesgue integral over [−a, b]×[−c, d] in (1.7) can be replaced by a Riemann
integral. Since the limits are taken independently of each other, we can then interpret the
right hand-side of (1.7) as an improper Riemann integral. If f and g carry singularities and
discontinuities, care must be taken in the region of integration so that the replacement of the
Lebesgue integral by Riemann integrals can be done.

The technique of converting L2 limits into pointwise limits as illustrated above is what
we will use to prove all of the theorems in the next section. It is the foundation of this work.

2. Results

In his paper (see [11], footnote 13), Feynman observed that by using wavefunctions, ill-
defined oscillatory integrals can be given a rigorous meaning. With this observation, we will
reformulate equation (1.1) into a rigorous mathematical object that represents the propagator.

The goal of this paper is the following. First, we will elaborate on Feynman’s observation
and use wavefunctions to provide a convergence factor in the derivation of a real-time
propagator that takes the form of an L2 transition probability amplitude. We will use
wavefunctions to derive a real-time, time-sliced Feynman path integral. We will derive two
non-standard analysis formulations of the time-sliced Feynman path integral. Finally, we will
compute the propagator of the harmonic oscillator using our non-standard Feynman path-
integral representation. We will assume that the reader is familiar with non-standard analysis
(see [13–17] and references therein).

The usual idea in using non-standard analysis is to replace the time-slice limit by a standard
part (see [9, 13, 18, 19] and references therein). We will derive a non-standard formulation
that transfers the time-slice limit into the non-standard world and standard part is taken on
infinitesimal parameters in wavefunctions. It was shown in [19] that for the harmonic oscillator,
equation (1.1) can be cast in the language of non-standard analysis where the time-slice limit
is replaced by a standard part. Furthermore, using non-standard analysis methods, one can
rigorously compute the harmonic oscillator propagator without having prior knowledge of the
classical path. We will follow the approach of [19] in the computations of this paper. In [19],
we do not know whether equation (1.1) is the propagator a priori; we are satisfied because
the computation produced the correct results. In this paper, we will have a Feynman path-
integral representation that is known to produce the propagator and we will use it to compute
the harmonic oscillator propagator.
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What we will show is the following. LetH = −h̄2

2m )+V (�x) = H0+V (�x)be essentially self-
adjoint and the domain of H contains the Schwartz space of rapidly decreasing test functions.
Denote the closure of H by H̄ . Let t > 0 and let

F�x(�y, γ ) = F(�x, �y, γ ) =
(

m

2πh̄γ

)n/2

exp

[
−mγ

2h̄

( �x − �y
γ

)2
]

γ > 0

G�x(�y, η) = G(�x, �y, η) =
(

m

2πh̄η

)n/2

exp

[
−mη

2h̄

( �x − �y
η

)2
]

η > 0

K(�x, �x0, η, γ, t) =
∫

Rn

G�x(�y, η)
[

exp

(−itH̄

h̄

)
F�x0(�z, γ )

]
(�y) d�y.

(2.1)

The notation for K(�x, �x0, η, γ, t) is that the evolution operator operates on the �z variable while
leaving �x0 fixed and the result is a function of �x0 and �y; finally, the �y variable is integrated over
G. We point out that K in (2.1) is in the form of an L2 transition probability amplitude, but
neither F nor G are wavefunctions since they are not normalized to 1 in the L2 norm. Also, the
form of K is similar to the form of the propagator given in [12] where Prugovecki provides a
theory of stochastic quantum mechanics. It will be interesting to see the relationship between
(2.1) and the stochastic propagator derived by Prugovecki. One immediate difference between
(2.1) and Progovecki’s formulation is that (2.1) stays within the popular representation of
quantum mechanics, whereas Prugovecki uses a different representation (see [12]).

The existence of K(�x, �x0, η, γ, t) is immediately obvious since both functions in the
integrand are in L2. We will show that

Theorem 2.1. K(�x, �x0, η, γ, t) is continuous as a function of (�x, �x0) ∈ R
2n and it is uniformly

bounded as a function of (�x, �x0) ∈ R
2n.

The kernel in theorem 2.1 will play the role of an integral kernel in the following sense.

Theorem 2.2(a). Let φ,ψ ∈ L2(Rn) Let H be essentially self-adjoint, then∫
Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x = lim

η,γ→0

∫̄
R2n

φ(�x)ψ(�x0
)
K(�x, �x0, η, γ, t) d�x0 d�x (2.2)

where the notation for the integral on the right-hand side of the equality in (2.2) means
an improper Lebesgue integral with the convergence at infinity taken pointwise in t (see
equation (5.10) for more details), and the limits are taken independently of each other and
pointwise in t .

Note that in the above theorem, the convergence of the improper Lebesgue integral is
pointwise in t as opposed to convergence in the L2 topology in equation (1.4). A pointwise
convergence might provide computational advantages.

We will not attempt to pass the limits in (2.2) inside the integral since some real-time
propagators do not exist as a function for all time and must be treated as distributions (see
[1]). We will make a connection between K(�x, �x0, η, γ, t) and the theory of distributions (see
remark 6.2 and equation (6.4)). On the other hand, we would be like to be able to pass the
limits inside the improper Lebesgue integral when the kernel in theorem 2.1 and the propagator
for the evolution are well behaved. The next theorem provides us with that opportunity.

Theorem 2.2(b). Let φ,ψ ∈ L2⋂L1. Let H be essentially self-adjoint, then∫
Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x = lim

η,γ→0

∫
R2n

φ(�x)ψ(�x0
)
K(�x, �x0, η, γ, t) d�x0 d�x (2.3)
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where the integral on the right-hand side of the equality is a Lebesgue integral and all limits
are taken independently of each other and pointwise in t .

In the above theorem, theorem 2.1 and the fact that the wavefunctions are in L1 provide
us with the opportunity to pass the limits inside the integral and produce the propagator for
the evolution. We will do this for the harmonic oscillator Hamiltonian. Furthermore, for
the purpose of passing the limits, we will not attempt to generalize the wavefunctions to all
of L2 since integrating the propagator over two arbitrary L2 wavefunctions in the sense of
equation (1.2) is not always well defined; the free evolution propagator is one such example.

The kernel in (2.1) can be represented explicitly by a time-sliced Feynman path integral.

Theorem 2.3. Let H be essentially self-adjoint, and the potential V be such that it has at most
a finite number of discontinuities and singularities. Let

wn,k =
( m

2iπh̄ε

)nk/2
ε = t

k

Sk (�xk+1, . . . , �x1) =
k+1∑
j=2

[
m

2

( �xj − �xj−1

ε

)2

− V
(�xj )

] (2.4)

then

K(�x, �x0, η, γ, t) = lim
k→∞

wn,k

∫
rR(k+1)n

F�x0(�x1, γ )

× exp

[
iε

h̄
Sk(�xk+1, . . . , �x1)

]
G�x(�xk+1, η) d�x1 . . . d�xk+1. (2.5)

In (2.5), the integral is an improper Riemann integral and the k limit is taken pointwise in t .

In theorem 2.3, there is no restriction on the type of discontinuities and singularities
on the potential as long as the Hamiltonian is essentially self-adjoint, and by an improper
Riemann integral we mean a Riemann integral with convergence at infinity taken pointwise in
t . Furthermore, it is not necessary to put the restriction on the potential in the above theorem
and work with an improper Riemann integrals if one is willing to work with improper Lebesgue
integral as in theorem 2.2(a) (see remark 3.2), but for our purpose of computing the harmonic
oscillator propagator (see section 8), we will formulate theorem 2.3 as above.

The problem with formulating a real-time, time-sliced Feynman path integral is that
Fubini’s theorem cannot be applied due to the oscillatory nature of the integrand. We will
see that the application of Fubini’s theorem can be justified in the derivation of (2.5) because
functions F and G play the role of convergence factors as Feynman pointed out.

The propagator is usually formulated for the wavefunction. If we wish to work with the
wavefunction, we have the following.

Theorem 2.4(a). Let ψ ∈ L2(Rn), H be essentially self-adjoint, then the following is true:[
exp

(−itH̄

h̄

)
ψ

]
(�x) = lim

η,γ→0

∫
Rn

ψ
(�x0
)
K(�x, �x0, η, γ, t) d�x0 (2.6a)

where the integral in (2.6a) is a Lebesgue integral and the limits are taken independently of
each other in the L2 topology.

Theorem 2.4(a) above provides us with another way to deal with arbitrary L2

wavefunctions when equation (2.1) is considered as a distribution in R
2n.
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Theorem 2.4(b). Let ψ, φ ∈ L2(Rn), H be essentially self-adjoint, then the following is true:∫
Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) = lim

η,γ→0

∫
Rn

φ(�x)
(∫

Rn

ψ
(�x0
)
K(�x, �x0, η, γ, t) d�x0

)
d�x

(2.6b)

where the integrals in (2.6b) are iterated Lebesgue integrals and the limits are taken
independently of each other and pointwise in t .

We will connect theorem 2.2 to the theory of distributions.

Theorem 2.5. Let S be the space of rapidly decreasing test functions. Suppose H = H0 + V

is essentially self-adjoint, then there exists a tempered distribution Kt (�x, �x0) on S (Rn × R
n)

such that ∀φ(�x), ψ(�x0
) ∈ S(Rn),∫

Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x =

∫
Kt (�x, �x0) φ(�x)ψ

(�x0
)

d�x d�x0 (2.7)

where the integral on the right-hand side of equation (2.7) is a distribution inner product.

Theorem 2.2 above is linked to the theory of tempered distributions via theorem 2.5. We
will prove some properties of the distribution Kt (�x, �x0) given in (2.7). We have, in fact, gone
beyond the theory of distributions in the sense that theorems 2.2 and 2.4 are not just true for
rapidly decreasing test functions, they are true for a much bigger class of functions.

Finally, the above theorems can be cast into the language of non-standard analysis. The
idea of using non-standard analysis to formulate the Feynman path integral is not new (see
[9, 13, 18, 19] and references therein). The usual formulation is to replace the time-slice limit
with a standard part. Following that idea, theorem 2.3 can be easily reformulated in the
language of non-standard analysis as follows.

Theorem 2.6. With the notation and conditions in theorem 2.3, we can write

K(�x, �x0, η, γ, t) = lim
k→∞

Kk(�x, �x0, η, γ, t) (2.8)

where Kk is given in (2.5). Let ω ∈ ∗
N − N, then

K(�x, �x0, η, γ, t) = st (∗Kω(�x, �x0, η, γ, t)) (2.9)

where st is the standard part.

Note that ∗Kω consists of an infinite (namely ω) copies of *-improper Riemann integrals.
Equation (2.9) is, in fact, a special case of the work done in [9].

We now come to a new formulation of the Feynman path integral in the language of
non-standard analysis.

Theorem 2.7. Under the conditions of theorem 2.2 (part (a) or (b)), let η and γ be positive
infinitesimal in the language of non-standard analysis, then∫

Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x = st

(
∗
∫̄

R2n
φ(�x)ψ(�x0

)
K(�x, �x0, η, γ, t) d�x0 d�x

)
(2.10a)∫

Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x = st

(
∗
∫

R2n
φ(�x)ψ(�x0

)
K(�x, �x0, η, γ, t) d�x0 d�x

)
(2.10b)
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where equations (2.10a) and (2.10b) correspond to theorem 2.2(a) and (b), respectively, st
denotes the standard part of the *-transformed improper Lebesgue integral ((2.10a), in the
sense of theorem 2.2(a)) and the Lebesgue integral ((2.10b), theorem 2.2(b)).

The implication of theorem 2.7 on Feynman path integrals is the following. Suppose the
Hamiltonian has a finite number of singularities and discontinuities, then theorem 2.3 holds.
*-transforming theorem 2.3, equation (2.5) reads: for all η, γ ∈ ∗

R
+,

∗K(�x, �x0, η, γ, t) = ∗ lim
k→∞

∗Kk(�x, �x0, η, γ, t) (2.11)

where the *-limit is a limit taken in the non-standard world, and ∗Kk are k copies of *-
improper Riemann integrals. In particular, we can let η and γ be positive infinitesimal and use
equation (2.11) in theorem 2.7. The time-sliced Feynman path integral now has time-sliced
limits taken in the non-standard world and standard parts taken on η and γ in the sense of
theorem 2.7. As mentioned earlier, this formulation differs from the popular usage of non-
standard analysis on path integrals in that the time-slice limit is not replaced by a standard part.
This new formulation uses the fact that functions F and G behave like delta functions when η

and γ are positive infinitesimal.
Lastly, we will use equation (2.9) and theorem 2.2(b) to compute the harmonic oscillator

propagator. We will compute the propagator in such a way that no prior knowledge of
the classical path is needed. In fact, the classical part of the propagator naturally falls out
from quantum considerations. The usual method to compute the harmonic oscillator with the
Feynman path integral is to use the classical path and separate out the classical and quantum
fluctuation parts (see [4, 5]). From our computational point of view, the classical mechanics
part comes purely from quantum considerations and that goes against the grain of Feynman’s
original idea that quantum mechanics comes from classical mechanics via the action integral
in the integrand of integration over path space.

The Hamiltonian for the harmonic oscillator is

H = −h̄2

2m
) +

mλ2

2
�x2.

It is well known that for 0 < t < π/λ, the n-dimensional harmonic oscillator propagator is
given by

K(�x, �x0, t) =
( m

2π ih̄

)n/2
(

λ

sin λt

)n/2

exp

{
im

h̄

λ

sin λt

[(�x2
0 + �x2

)
cos λt − 2�x �x0

]}
= h

(
1
2n, t

)
g (�x, �x0, t)

h
(

1
2n, t

) =
( m

2π ih̄

)n/2
(

λ

sin λt

)n/2

g (�x, �x0, t) = exp

{
im

h̄

λ

sin λt

[(�x2
0 + �x2

)
cos λt − 2�x �x0

]}
(2.12)

where g(�x, �x0, t) is the classical part and h(n/2) is the quantum fluctuation. Given (2.12), we
would expect that

K(�x, �x0, η, γ, t) = h
(

1
2n, t

) ∫
R2n

g(�y, �y0, t)F (�y0, �x0, γ )G(�y, �x, η) d�y d�y0. (2.13)

Note that in (2.13), the disturbance of the functions F and G affects only the classical part.
We conclude this section with a comment and a summary. The reader should compare

the similarities and differences between the formulations above and that of the notion of weak
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integral kernels (see [2] and references therein). In particular, one difference is that the above
kernel exists for all essentially self-adjoint Hamiltonians. The main purpose of this paper is
to derive a rigorous theory of real-time propagators and real-time Feynman path integrals.
The propagator exists for all essentially self-adjoint Hamiltonians and is closely related to
distributions. The Feynman path integral exists for potentials that carry at most a finite number
of singularities and discontinuities, it is formulated via improper Riemann integrals, and it can
be formulated with classical analysis and non-standard analysis. Lastly, we use non-standard
analysis and compute the propagator for the harmonic oscillator without prior knowledge of
the classical path.

3. Proof of theorem 2.3

We start by giving a quick proof of theorem 2.3. This theorem is a specific case of the work
done in [9]. For full details of the proof, we refer the reader to [9].

We first set some notation. Suppose V is such that it has at most a finite number of
singularities and discontinuities. Let k ∈ N and 1 � l � k + 1. We will denote the interior of
the lth box by

Al = (−al
1, b

l
1) × · · · × (−al

n, b
l
n) (3.1)

for positive and large a and b. Let K = {�y1 . . . �yp
}

be the set of discontinuous and singular
points of V . For each �yq = (y

q

1 , . . . , y
q
n ) ∈ K , denote the lth box centred at �yq by

Bl
q =

(
y
q

1 − 1

c
q,l

1

, y
q

1 +
1

d
q,l

1

)
× · · · ×

(
yq
n − 1

c
q,l
n

, yq
n +

1

d
q,l
n

)
(3.2)

for positive and large c and d . Let

Cl = Al −
{

p⋃
q=1

Bl
q

}
. (3.3)

For arbitrary large a, b, c and d , Cl is a box which encloses the set K and at each point of K ,
a small box centred at that point is taken out. Associated with Cl is a set of indices

{jl} = {al
1, . . . , a

l
n, b

l
1, . . . , b

l
n, c

1,l
1 , . . . , c1,l

n , . . . , c
p,l

1 , . . . , cp,ln ,

d
1,l
1 , . . . , d1,l

n , . . . , d
p,l

1 , . . . , dp,l
n }. (3.4)

We will denote by {jl} → ∞,

al
1, . . . , a

l
n, b

l
1, . . . , b

l
n, c

1,l
1 , . . . , c1,l

n , . . . , c
p,l

1 , . . . , cp,ln ,

d
1,l
1 , . . . , d1,l

n , . . . , d
p,l

1 , . . . , dp,l
n → ∞ (3.5)

where all indices go to infinity independently of each other. Note that as {jl} → ∞, we
recover R

n a.e. from Cl . We will denote by χ{jl} the characteristic function on Cl . Note that
for f ∈ L2(Rn),

lim
{jl}→∞

χ{jl}f = f a.e. (3.6)

where the limit in (3.6) is taken in the L2 topology. Let us write

D{J h
l } = Cl × · · · × Ch l � h. (3.7)
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Associated with D{J h
l } is a set of indices

{
J h
l

} =
h⋃

α=l

{jα} (3.8)

and as before, we will use the notation
{
J h
l

}→ ∞ to mean

{jl} → ∞, . . . , {jh} → ∞ (3.9)

where the indices are taken to infinity independently of each other. Finally, we will denote
by
∫
rO

Riemann or improper Riemann integration over the region O and by
∫
O

Lebesgue
integration over the region O.

Theorem 3.1. Theorem 2.3 is true.

Proof. Trotter’s product formula (see [7, 8, 10]) and Schwarz’s inequality imply that∫
Rn

G�x(�y, η)
[

exp

(−itH̄

h̄

)
F�x0(�z, γ )

]
(�y) d�y

= lim
k→∞

∫
Rn

G�x(�y, η)
[{

exp

(−itV

kh̄

)
exp

(−itH0

kh̄

)}k

F�x0(�z, γ )
]
(�y) d�y

(3.10)

where the limit in (3.10) is taken pointwise as a function of t . To the right of each of
the operators exp (−itH0/kh̄) in (3.10), we put in the identity operator lim{jl}→∞ χ{jl} for
1 � l � k in increasing order from right to left and the limit is taken in the L2 topology.
Since exp (−itV /kh̄), exp (−itH0/kh̄), and multiplication by a characteristic function are all
continuous operators, we can take all the limits outside of the operators and obtain{

exp

(−itV

kh̄

)
exp

(−itH0

kh̄

)}k

F�x0 = exp

(−itV

kh̄

)
exp

(−itH0

kh̄

)
lim

{jk}→∞
χ{jk} · · ·

× exp

(−itV

kh̄

)
exp

(−itH0

kh̄

)
lim

{j1}→∞
χ{j1}F�x0

= lim{J k
1 }→∞

exp

(−itV

kh̄

)
exp

(−itH0

kh̄

)
χ{jk} · · ·

× exp

(−itV

kh̄

)
exp

(−itH0

kh̄

)
χ{j1}F�x0

= lim{J k
1 }→∞

wn,k

∫
D{Jk1 }

exp

[
iε

h̄
Sk (�xk+1, . . . , �x1)

]
F�x0(�x1, γ ) d�x1 . . . d�xk. (3.11)

In the last equality in (3.11), we used the integral representation of the free evolution operator;
we emphasize that all limits in (3.11) are taken in the L2 topology and are taken independently
of each other. Equations (3.6), (3.10), (3.11) and Schwarz’s inequality imply that∫

Rn

G�x(�y, η)
[

exp

(−itH̄

h̄

)
F�x0(�z, γ )

]
(�y) d�y = lim

k→∞
wn,k

∫
Rn

[
lim

{jk+1}→∞
χ{jk+1}G�x (�xk+1, η)

× lim{J k
1 }→∞

wn,k

∫
D{Jk1 }

exp

[
iε

h̄
Sk (�xk+1, . . . , �x1)

]
F�x0(�x1, γ ) d�x1 . . . d�xk

]
d�xk+1



9224 K Loo

= lim
k→∞

wn,k lim{J k+1
1 }→∞

∫
D{Jk+1

1 }
G�x (�xk+1, η)

× exp

[
iε

h̄
Sk (�xk+1, . . . , �x1)

]
F�x0 (�x1, γ ) d�x1 . . . d�xk+1. (3.12)

In (3.12), all limits inside the integrals are taken independently of each other in the L2 topology
and all limits taken outside of the integral are taken pointwise in t . By construction, the
integrand

G�x (�xk+1, η) exp

[
iε

h̄
Sk (�xk+1, . . . , �x1)

]
F�x0(�x1, γ ) (3.13)

is bounded and continuous on D{J k+1
1 }. Hence, the Lebesgue integral over D{J k+1

1 } in the last

equality of (3.12) can be replaced by a Riemann integral over D{J k+1
1 }. Since the

{
J k+1

1

}
limits

in (3.12) are all taken independently of each other, we can interpret those limits and the integral
as an improper Riemann integral. �

Remark 3.2. It is not necessary to use improper Riemann integrals or put the discontinuities
and singularities restriction on the potential. We forget about the holes centred at each element
of K as given in (3.2) and take Cl = Al as defined in (3.1). Proceeding in the same manner
as the above proof, we arrive at (3.12). At this point, we do not replace the Lebesgue integral
with a Riemann integral since the integrand is not necessarily bounded and continuous over
the region of integration. We are then left with an improper Lebesgue integral in which the
convergence of the integral is taken pointwise in t .

4. Proof of theorem 2.1

In this section, we prove theorem 2.1. Let us denote

T k =
{

exp

(−itV

kh̄

)
exp

(−itH0

kh̄

)}k

T̄ k =
{

exp

(−itH0

kh̄

)
exp

(−itV

kh̄

)}k

.

(4.1)

Theorem 4.1. With our previously defined notation, we have∣∣K(�x, �x0, η, γ, t)| � Ct,η,γ (4.2)

where Ct,η,γ is a constant depending only on t, η and γ .

Proof. Since the evolution operator has norm 1, using Schwarz’s inequality on the kernel in
(2.1) gives

|K(�x, �x0, η, γ, t)| �
∥∥G�x(�y, η)

∥∥
2

∥∥F�x0(�y, γ )
∥∥

2 ≡ Ct,η,γ . (4.3)

�
We will now show that K(�x, �x0, η, γ, t, ) is continuous as a function of (�x, �x0) ∈ R

n.

Lemma 4.2. Let f, g ∈ L2(Rn), then the following is true:∫
Rn

g(�x)
[

exp

(−itH0

kh̄

)
f

]
(�x) d�x =

∫
Rn

[
exp

(−itH0

kh̄

)
g

]
(�x)f (�x) d�x. (4.4)
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Proof. Let χα be the characteristic function of the cube centred at the origin with sides of
length α, then[

exp

(−iεH0

h̄

)
f

]
(�x) = lim

α→∞wn,1

∫
Rn

χα(�y) exp

[
imε

2h̄

( �x − �y
ε

)2
]
f (�y) d�y (4.5)

where the limit in (4.5) is taken in theL2 norm. Using Schwarz’s inequality onα and Lebesgue’s
dominating convergence theorem on β, we have∫

Rn

g(�x)
[

exp

(−itH0

kh̄

)
f

]
(�x) d�x

= lim
β,α→∞

wn,1

∫
Rn

χβ(�x)g(�x)
{∫

Rn

χα(�y) exp

[
imε

2h̄

( �x − �y
ε

)2
]
f (�y) d�y

}
d�x

= lim
β,α→∞

wn,1

∫
Rn

χα(�y)f (�y)
{∫

Rn

χβ(�x) exp

[
imε

2h̄

( �x − �y
ε

)2
]
g(�x) d�x

}
d�y

(4.6)

where the limits are taken pointwise in t . Using Schwarz’s inequality on β and Lebesgue’s
dominating convergence theorem on α in the last expression in (4.6) gives (4.4). �

Lemma 4.3. Let f, g ∈ L2(Rn), then the following is true:∫
Rn

g(�x)
[

exp

(−itH̄

h̄

)
f

]
(�x) d�x =

∫
Rn

[
exp

(−itH̄

h̄

)
g

]
(�x)f (�x) d�x. (4.7)

Proof. Intuitively, if we think of the evolution as an exponential of the Hamiltonian H̄ , we
can expand the exponential in powers of H̄ and put all powers of H̄ from the function f onto
the function g since H̄ is self-adjoint. This is also true for lemma 4.2.

Schwarz’s inequality and Trotter’s formula implies∫
Rn

g(�x)
[

exp

(−itH̄

h̄

)
f

]
(�x) d�x = lim

k→∞

∫
Rn

g(�x) [T kf
]
(�x) d�x (4.8)

where the limit is taken pointwise in t and T k is given in (4.1). Using lemma 4.2, and T̄ k as
defined in (4.1), we obtain

lim
k→∞

∫
Rn

g(�x) [T kf
]
(�x) d�x = lim

k→∞

∫
Rn

[
T̄ kg

]
(�x)f (�x) d�x

=
∫

Rn

[
exp

(−itH̄

h̄

)
g

]
(�x)f (�x) d�x. (4.9)

�

Theorem 4.4. With our previously defined notation, the expression∣∣K(�x, �x0, η, γ, t) − K(�y, �y0, η, γ, t)
∣∣ (4.10)

goes to zero as (�x, �x0) goes to (�y, �y0).
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Proof. We first show that K(�x, �x0, η, γ, t) is separately continuous in �x and �x0, then jointly
continuous. Schwarz’s inequality implies that∣∣K(�x, �x0, η, γ, t) − K(�y, �x0, η, γ, t)

∣∣2 �
∥∥G�x(�z, η) − G�y(�z, η)

∥∥2
2

∥∥F�x0(�z, γ )
∥∥2

2

= ∥∥F�x0(�z, γ )
∥∥2

2

(
m

2πh̄η

)n ∫
Rn

{
exp

[−mη

2h̄

( �x − �z
η

)2]

− exp

[−mη

2h̄

( �y − �z
η

)2]}2

d�z

= C

(
m

2πh̄η

)n{∫
Rn

2

[
exp

(−mη

2h̄

�z2

η2

)]2

d�z

−
∫

Rn

2 exp

(−mη

2h̄

�z2

η2

)
exp

(−mη

2h̄

(�z + �y − �x)2
η2

)
d�z
}

= Cγ,tg
(�y, �x) (4.11)

where Cγ,t is a constant independent of �x0 and g (�y, �x) is independent of �x0. Using Lebesgue’s
dominating convergence theorem on �x → �y in (4.11), we obtain Cγ,tg (�y, �x) → 0. Using
lemma 4.3 in equation (2.1), we can put the evolution operator on G�x(�y, η). With the same
reasoning as (4.11), we obtain∣∣K (�x, �x0, η, γ, t) − K (�x, �y0, η, γ, t)

∣∣2 � Dη,tf (�y0, �x0) → 0 (4.12)

as �x0 → �y0.
Finally,∣∣K(�x, �x0, η, γ, t) − K(�y, �y0, η, γ, t)

∣∣ � ∣∣K(�x, �x0, η, γ, t) − K(�y, �x0, η, γ, t)
∣∣

+
∣∣K(�y, �x0, η, γ, t) − K(�y, �y0, η, γ, t)

∣∣
�
√
Cγ,tg(�y, �x) +

√
Dη,tf (�y0, �x0) → 0 (4.13)

as (�x, �x0) → (�y, �y0). �

5. Proof of theorems 2.2 and 2.4

We will now prove theorems 2.2 and 2.4.

Proposition 5.1. Let f, g ∈ L2, then∫
Rn

f (�z)
[

exp

(−ηH0

h̄

)
g

]
(�z) d�z =

∫
Rn

g(�z)
[

exp

(−ηH0

h̄

)
f

]
(�z) d�z

=
∫

R2n
g(�x)G(�x, �y, η)f (�y) d�x d�y (5.1)

where G(�x, �y, η) is the Gaussian kernel given in equation (2.1).

Proof. Since |f | and |g| are in L2, we have∫
Rn

(∫
Rn

|g(�x)||G(�x, �y, η)||f (�y)| d�x
)

d�y =
∫
Rn

|g(�x)|
(∫

Rn

G(�x, �y, η)|f (�y)| d�x
)

d�y

=
∫

Rn

|g(�x)|
[

exp

(−ηH0

h̄

)
|f |
]
(�x) d�x < ∞. (5.2)
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Equation (5.1) then follows from Fubini’s theorem. �

Theorem 5.2. Theorem 2.2(b) is true.

Proof. First recall that in theorem 2.2(b), the wavefunctionsφ,ψ ∈ L2∩L1. Using lemma 4.3,
the kernel in (2.1) can be written as

K(�x, �x0, η, γ, t) =
[

exp

(−γH0

h̄

)
exp

(−itH̄

h̄

)
G�x(�z, η)

] (�x0
)
. (5.3)

We have that[
exp

(−itH̄

h̄

)
ψ

]
(�x) = lim

η,γ→0

[
exp

(−ηH0

h̄

)
exp

(−itH̄

h̄

)
exp

(−γH0

h̄

)
ψ

]
(�x) (5.4)

where the limits in (5.4) are taken in L2 topology. Using Schwarz’s inequality, the following
holds:∫

Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x

= lim
η,γ→0

∫
Rn

φ(�x)
[

exp

(−ηH0

h̄

)
exp

(−itH̄

h̄

)
exp

(−γH0

h̄

)
ψ

]
(�x) d�x (5.5)

where the limits in (5.5) are taken pointwise in t . Lemma 4.3 and proposition 5.1 imply that[
exp

(−ηH0

h̄

)
exp

(−itH̄

h̄

)
exp

(−γH0

h̄

)
ψ

]
(�x)

=
∫

Rn

G(�x, �y, η)
[

exp

(−itH̄

h̄

)
exp

(−γH0

h̄

)
ψ

]
(�y) d�y

=
∫

Rn

[
exp

(−itH̄

h̄

)
G�x(�z, η)

]
(�y)
[

exp

(−γH0

h̄

)
ψ

]
(�y) d�y

=
∫

Rn

[
exp

(−γH0

h̄

)
exp

(−itH̄

h̄

)
G�x(�z, η)

] (�x0
)
ψ
(�x0
)

d�x0

=
∫

Rn

K(�x, �x0, η, γ, t)ψ
(�x0
)

d�x0. (5.6)

Thus,∫
Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x = lim

η,γ→0

∫
Rn

φ(�x)
(∫

Rn

K(�x, �x0, η, γ, t)ψ
(�x0
)

d�x0

)
d�x

= lim
η,γ→0

∫
R2n

φ(�x)K(�x, �x0, η, γ, t)ψ
(�x0
)

d�x0 d�x (5.7)

where the last equality in (5.7) is obtained from theorem 2.1 (theorems 4.1 and 4.2) and the
fact that the wavefunctions φ and ψ are in L1. �

Theorem 5.3. Theorem 2.2(a) is true.
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Proof. Let C1 = A1, C2 = A2 be as described in equation (3.1) and remark 3.2. Let
χ1

{j1}, χ
2
{j2} be the characteristic function on the region C1 and C2, respectively ({j1} and {j2}

are as described in equation (3.4) for C1 and C2). Let φ,ψ ∈ L2, then[
exp

(−ηH0

h̄

)
exp

(−itH̄

h̄

)
exp

(−γH0

h̄

)
ψ

]

= lim
{j1}→∞

[
exp

(−ηH0

h̄

)
exp

(−itH̄

h̄

)
exp

(−γH0

h̄

)
χ1

{j1}ψ
]

φ = lim
{j2}→∞

χ2
{j1}φ

(5.8)

where all limits in (5.8) are taken in the L2 topology. Using (5.4), (5.5) and (5.8), we have∫
Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x

= lim
η,γ→0

∫
Rn

φ(�x)
[

exp

(−ηH0

h̄

)
exp

(−itH̄

h̄

)
exp

(−γH0

h̄

)
ψ

]
(�x) d�x

= lim
η,γ→0

∫
Rn

lim
{j2}→∞

χ2
{j1}φ(�x)

× lim
{j2}→∞

[
exp

(−ηH0

h̄

)
exp

(−itH̄

h̄

)
exp

(−γH0

h̄

)
χ2

{j2}ψ
]
(�x) d�x. (5.9)

Finally, using Schwarz’s inequality and theorem 5.2 on the last expression in (5.9) gives∫
Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x = lim

η,γ→0
lim

{j1},{j2}→∞

∫
Rn

χ1
{j1}φ(�x)

×
[

exp

(−ηH0

h̄

)
exp

(−itH̄

h̄

)
exp

(−γH0

h̄

)
χ2

{j2}ψ
]
(�x) d�x

= lim
η,γ→0

lim
{j1},{j2}→∞

∫
C1×C2

φ(�x)K(�x, �x0, η, γ, t)ψ
(�x0
)

d�x0 d�x

≡ lim
η,γ→0

∫̄
R2n

φ(�x)K(�x, �x0, η, γ, t)ψ
(�x0
)

d�x0 d�x (5.10)

where all limits outside of integrals are taken pointwise in t and
∫̄

by definition is an improper
Lebesgue integral with convergence at infinity taken pointwise in t . �

Remark 5.4. If we restrict φ,ψ ∈ L2 to have a finite number of singularities and
discontinuities as in the proof of theorem 2.3 (theorem 3.1), we can obtain an improper Riemann
integral as opposed to an improper Lebesgue integral for theorem 5.3.

Theorem 5.5. Theorem 2.4(a) is true.

Proof. Equation (5.6) is true for all ψ ∈ L2. Taken limη,γ→∞ on both sides of (5.6) in the L2

topology gives theorem 2.4(a), equation (2.6a). �

Theorem 5.6. Theorem 2.4(b) is true.
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Proof. Let φ,ψ ∈ L2, then Schwarz’s inequality and theorem 2.4(a) (theorem 5.4) imply∫
Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) =

∫
Rn

φ(�x)
(

lim
η,γ→0

∫
Rn

ψ
(�x0
)
K(�x, �x0, η, γ, t) d�x0

)
d�x

= lim
η,γ→0

∫
Rn

φ(�x)
(∫

Rn

ψ
(�x0
)
K(�x, �x0, η, γ, t) d�x0

)
d�x (5.11)

where limits inside the integral are taken in L2 and limits taken outside the integrals are taken
pointwise in t . �

6. Proof of theorem 2.5

In this section, we prove theorem 2.5 and derive some properties of the tempered distribution
in this theorem. Since we will be working with tempered distributions, we will let φ and ψ

be in the class of rapidly decreasing test functions which we will denote by S(Rn). If φ and
ψ are elements of L2(Rn), we can choose a sequence of test functions {φl} and

{
ψj

}
such

that φl → φ and ψj → ψ in L2. Applying Schwarz’s inequality and using the fact that the
evolution operator has an operator norm equal to 1, we can write∫

Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x = lim

j,l→∞

∫
Rn

φl(�x)
[

exp

(−itH̄

h̄

)
ψj

]
(�x) d�x. (6.1)

Thus, by taking limits in the sense of (6.1), we can always recover all of the L2 wavefunctions
in the theory.

Theorem 6.1. Theorem 2.5 is true.

Proof. Suppose {φk(�x)} ⊂ S(Rn) with φk(�x) → φ(�x) in S(Rn), then∣∣∣∣
∫

Rn

[
φ(�x) − φk(�x)

] [
exp

(−itH̄

h̄

)
ψ

]
(�x) d�x

∣∣∣∣
� ‖φ − φk‖2 ×

∥∥∥∥ exp

(−itH̄

h̄

)
ψ

∥∥∥∥
2

→ 0. (6.2)

Suppose {ψk(�x)} ⊂ S(Rn)with ψk(�x) → ψ(�x) in S(Rn), then∣∣∣∣
∫

Rn

φ(�x)
[

exp

(−itH̄

h̄

)
(ψ − ψk)

]
(�x) d�x

∣∣∣∣
� ‖φ‖2 × ‖ exp

(−itH̄

h̄

)
(ψ − ψk) ‖2 = ‖φ‖2 × ‖ (ψ − ψk) ‖2 → 0. (6.3)

Hence the theorem follows from Schwartz’s kernel theorem. �

Remark 6.2. Note that theorems 2.2 and 2.5 imply that

lim
η,γ→∞

∫
R2n

φ(�x)ψ(�x0
)
K(�x, �x0, η, γ, t) d�x0 d�x =

∫
Kt (�x, �x0) φ(�x)ψ

(�x0
)

d�x d�x0 (6.4)

At t = 0, the evolution operator becomes the identity operator. In distributions language,
We have the following:

Theorem 6.3. At t = 0, Kt (�x, �x0) satisfies K0 (�x, �x0) = δ (�x − �x0).
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Proof. Since
[
exp

(−itH̄ /h̄
)
ψ
]
(�x) = ψ(�x) when t = 0, we have∫

K0 (�x, �x0) φ(�x)ψ
(�x0
)

d�x0 d�x =
∫

Rn

φ(�x)ψ(�x) d�x

=
∫ ∫

φ(�x)δ (�x − �x0) ψ
(�x0
)

d�x d�x0. (6.5)

We extend (6.5) to all of S (Rn × R
n). Let η (�x, �x0) ∈ S (Rn × R

n). Choose a sequence
of functions ηk (�x, �x0) in S (Rn × R

n) such that ηk → η in S (Rn × R
n) and ηk =∑jk

i=0 ui,k(�x)vi,k
(�x0
)
, whereui,k and vi,k ∈ D(Rn), theC∞ compactly supported test functions,

then ∫
K0 (�x, �x0) η (�x, �x0) d�x d�x0 = lim

k→∞

∫
K0 (�x, �x0) ηk (�x, �x0) d�x d�x0

= lim
k→∞

∫
Rn

jk∑
i=0

ui,k(�x)vi,k(�x) d�x

=
∫

Rn

η (�x, �x) d�x

=
∫

δ (�x − �x0) η (�x, �x0) d�x d�x0. (6.6)

�

It is well known that the free propagator satisfies K free
t (�x, �x0) = K free

t (�x0, �x). We will
show a similar property for the tempered distribution in theorem 6.1. Intuitively, it is reasonable
to believe that the from lemma 4.5 we can conclude the following.

Theorem 6.4. Kt (�x, �x0) = Kt (�x0, �x) where equality is in the sense of distributions.

Proof. ∀φ(�x), ψ(�x0
) ∈ S(Rn), we have that∫

Kt (�x, �x0) φ(�x)ψ
(�x0
)

d�x d�x0 =
∫

Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x

=
∫

Rn

ψ
(�x0
) [

exp

(−itH̄

h̄

)
φ

] (�x0
)

d�x0 =
∫

Rn

ψ(�x)
[

exp

(−itH̄

h̄

)
φ

]
(�x) d�x

=
∫

Kt (�x, �x0) ψ(�x)φ(�x0
)

d�x d�x0 =
∫

Kt (�x0, �x)ψ(�x0
)
φ(�x) d�x d�x0. (6.7)

We extend (6.7) to all of S (Rn × R
n). Let η (�x, �x0) ∈ S (Rn × R

n). Choose a sequence of
functions ηk (�x, �x0) in S

(
R

2n
)

such that ηk → η in S
(
R

2n
)

and ηk = ∑jk
i=0 ui,k(�x)vi,k

(�x0
)

where ui,k and vi,k ∈ D(Rn), the C∞ compactly supported test functions. We then have∫
Kt (�x, �x0) η (�x, �x0) d�x d�x0 = lim

k→∞

∫
Kt (�x, �x0) ηk (�x, �x0) d�x d�x0

= lim
k→∞

∫
Kt (�x0, �x) ηk (�x, �x0) d�x d�x0 =

∫
Kt (�x0, �x) η (�x, �x0) d�x d�x0. (6.8)

�



A rigorous real-time Feynman path integral and propagator 9231

7. Proof of theorems 2.6 and 2.7

Theorem 7.1. Theorem 2.6 is true.

Proof. The non-standard equivalent of equation (2.8) is: for all ω ∈ ∗
N − N,

K(�x, �x0, η, γ, t) = st
(∗Kω(�x, �x0, η, γ, t)

)
. (7.1)

�

Theorem 7.2. Theorem 2.7 is true.

Proof. Let

H̄ (η, γ ) =
∫̄

R2n
φ(�x)ψ(�x0

)
K(�x, �x0, η, γ, t) d�x0 d�x

H(η, γ ) =
∫

R2n
φ(�x)ψ(�x0

)
K(�x, �x0, η, γ, t) d�x0 d�x

C =
∫

Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x.

(7.2)

Theorem 2.2 implies that for all ε ∈ R
+, there exists a δ ∈ R

+ such that

|H(η, γ ) − C| < ε when η, γ < δ. (7.3)

We now *-transform (7.3) and conclude that any positive infinitesimal η and γ is less than δ.
Since we can do this for any standard ε, theorem 2.7 holds for H . A similar argument shows
that the theorem is also true for H̄ �

8. The harmonic oscillator

We now compute the harmonic oscillator propagator for 0 < t < π/λ using the formulae
above. Some of the techniques that we will use was worked out previously in [19], for full
details, we will occasionally refer the reader to [19]. For the harmonic oscillator, equation (1.5)
reads (with a shift in the indices)

K (�q, �q0, η, γ, t) = lim
k→∞

wn,k+1

∫
rR(k+2)n

F�q0 (�x0, γ )G�q (�xk+1, η)

× exp

{
iε

h̄

k+1∑
j=1

[
m

2

( �xj − �xj−1

ε

)2

− m

2
λ2
(�xj )2

]}
d�x0 . . . d�xk+1. (8.1)

Let us write �xj = (x1
j , . . . , x

n
j

)
, and

exp

{
iε

h̄

k+1∑
j=1

[
m

2

( �xj − �xj−1

ε

)2

− m

2
λ2
(�xj )2

]}

=
n∏

α=1

exp

{
iε

h̄

k+1∑
j=1

[
m

2

(
xα
j − xα

j−1

ε

)2

− m

2
λ2
(
xα
j

)2]}
. (8.2)

The popular method to compute the time-sliced harmonic oscillator path integral is to use (8.2)
to decouple the integrals in 1.0 and reduce the problem to one of producing one-dimensional
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harmonic oscillators. Due to the extra �x0, �xk+1 integrals in (8.1), it is not immediately clear
that we can use (8.2) to decouple the improper Riemann integrals.

For the moment, let us consider just one of the entries in the product of (8.2). To shorten
the notation, let us write

iε

h̄

k+1∑
j=1

[
m

2

(
xα
j − xα

j−1

ε

)2

− m

2
λ2(xα

j )
2

]
=
(

im

2h̄ε

)[ (
xα

0

)2 − 2xα
0 x

α
1 +
(
xα
k+1

)2 − 2xα
k x

α
k+1

+
k∑

j=1

2
(
xα
j

)2 −
k∑

j=1

2xα
j x

α
j−1 − ε2λ2

k+1∑
j=1

(
xα
j

)2 ]

=
(

im

2h̄ε

)
(�xα)

t







1 −1 0 · · · 0

−1
...

0 0 0
... −1
0 · · · −1 1




−ε2λ2




0 · · · · · · · · · 0
0 1 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
...

. . .
. . .

...

0 · · · · · · 0 1 0
0 · · · · · · 0 1




+




0 · · · · · · · · · · · · · · · · · · · · · · · · 0
0 2 −1 0 · · · · · · · · · · · · · · · 0
... −1 2 −1 0 · · · · · · · · · · · · 0
... 0 −1 2 −1 0 · · · · · · · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
. . .

0 · · · · · · · · · · · · 0 −1 2 −1 0
0 · · · · · · · · · · · · · · · 0 −1 2 0
0 · · · · · · · · · · · · · · · · · · · · · · · · 0







�xα

=
(

im

2h̄ε

) (
(�xα)

t
Tk �xα

)
(8.3)
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where Tk is the (k + 2) × (k + 2) symmetric matrix,

Tk =




1 −1 0 · · · 0

−1
...

0 Sk 0
... −1

0 · · · −1 1 − ε2λ2




(8.4)

with Sk being the k × k symmetric matrix Sk = Ak − ε2λ2Bk , where

Ak =




2 −1 0 · · · · · · · · · · · · 0

−1 2 −1 0 · · · · · · · · · 0

0 −1 2 −1 · · · · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . . 0

0 · · · · · · · · · 0 −1 2 −1

0 · · · · · · · · · · · · 0 −1 2




Bk =




1 0 · · · · · · 0

0 1 0 · · · · · · 0
...

. . .
. . .

. . .
...

. . .
. . .

. . .

. . .
. . .

. . .

...
. . .

. . .
...

0 · · · · · · 0 1 0

0 · · · · · · 0 1




(8.5)

and �xα is the column vector

�xα =




xα
0

xα
1

...

xα
k

xα
k+1



. (8.6)

Let wα : [0, t] → R be such that |wα(s)| < ∞ and wα(0) = xα
0 , w

α(t) = xα
k+1. In the

literature, the path wα is usually taken to be the path of the classical harmonic oscillator. Here,
we allow wα to be any finite path that starts at xα

0 and ends at xα
k+1. We do not assume prior

knowledge of classical mechanics. We make the substitution xα
j = wα (j t/(k + 1)) + yα

j =
wα

j + yα
j (note that yα

0 = 0 = yα
k+1 since wα(0) = xα

0 and wα(t) = xα
k+1). Using the fact that



9234 K Loo

Tk is symmetric, we have

(�xα)
t
Tk �xα = (�yα + �wα)

t
Tk (�yα + �wα)

= ( �wα)
t
Tk �wα + (�yα)

t
Tk �yα + ( �wα)

t
Tk �yα + (�yα)

t
Tk �wα

= ( �wα)
t
Tk �wα + (�yα)

t
Tk �yα + (Tk �wα)

t �yα +
(
( �wα)

t
Tk �yα

)t
= ( �wα)

t
Tk �wα + (�yα)

t
Tk �yα + (Tk �wα)

t �yα + ( �wα)
t
Tk �yα

= ( �wα)
t
Tk �wα + (�yα)

t
Tk �yα + 2 (Tk �wα)

t �yα (8.7)

where

�yα =




0

yα
1

...

yα
k

0




�wα =




wα
0 = xα

0

wα
1

...

wα
k

wα
k+1 = xα

k+1



. (8.8)

By using yα
0 = 0 = yα

k+1 and writing Tk as

Tk =




0 0 0 · · · 0

0
...

0 Sk 0
... 0

0 · · · 0 0




+




1 −1 0 · · · 0

−1
...

0 0 0
... −1

0 · · · −1 1 − ε2λ2




(8.9)

we obtain

(�xα)
t
Tk �xα = ( �wα)

t
Tk �wα + (�yα)

t
Tk �yα + 2 (Tk �wα)

t �yα

= ( �wα)
t
Tk �wα +

(
ŷα
)t
Skŷ

α + 2 ( �ρα)
t
ŷα (8.10)

where

ŷα =




yα
1

...

yα
k


 �ρα = Sk




wα
1

...

wα
k−1

wα
k


−




wα
0 = xα

0

0
...

0

wα
k+1 = xα

k+1




= Skŵ
α − ˆ̂wα

. (8.11)

Lemma 8.1. Let t ∈ R and 0 < t < π/λ. For any ω ∈ ∗
N − N, ∗Sω is positive definite in the

∗-transformed sense. Here, ∗Sω is the *-transform of the matrix Sk defined after equation (8.4).

Proof. See [19]. �
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We now go back to equations (8.1) and (8.2) in non-standard analysis form. With an abuse
of notation, in non-standard analysis (8.1) reads

K (�q, �q0, η, γ, t) = st

{
wn,ω+1

∫
rR(ω+2)n

F�q0 (�x0, γ )G�q (�xω+1, η)

× exp

{
iε

h̄

ω+1∑
j=1

[
m

2

( �xj − �xj−1

ε

)2

− m

2
λ2
(�xj )2

]}
d�x0 . . . d�xω+1

}

= st

{
wn,ω+1

∫
rR(ω+2)n

F�q0 (�x0, γ )G�q (�xω+1, η)

×
n∏

α=1

exp

{
iε

h̄

ω+1∑
j=1

[
m

2

(
xα
j − xα

j−1

ε

)2

− m

2
λ2
(
xα
j

)2]}
d�x0 . . . d�xω+1

}

= st

{
wn,ω+1

∫
rR(ω+2)n

F�q0 (�x0, γ )G�q (�xω+1, η)

×
n∏

α=1

exp

{(
im

2h̄ε

) (
(�xα)

t
Tω �xα

)}
d�x0 . . . d�xω+1

}
. (8.12)

We perform a *-transform of the change of variables described in equation (8.7) on �x1 . . . �xω,
and obtain

K (�q, �q0, η, γ, t) = st

{
wn,ω+1

∫
rR(ω+2)n

F�q0 (�x0, γ )G�q (�xω+1, η)

×
n∏

α=1

exp

{(
im

2h̄ε

)
( �wα)

t
Tω �wα

}

×
n∏

α=1

exp

{(
im

2h̄ε

)[(
ŷα
)t
Sωŷ

α + 2 ( �ρα)
t
ŷα
]}

d�x0 d�xω+1 d�y1 . . . d�yω
}
. (8.13)

Since Sω is positive definite, it is invertible. Since Sω is symmetric, the following is true:

(
ŷα
)t
Sωŷ

α + 2 ( �ρα)
t
ŷα = (ŷα + S−1

ω �ρα
)t
Sω

(
ŷα + S−1

ω �ρα
)− ( �ρα)

t
S−1
ω �ρα. (8.14)

Using (8.14) in (8.13) and performing the transformation zαj = yα
j +
(
S−1
ω �ρα

)
j
, we obtain

K (�q, �q0, η, γ, t) = st

{
wn,ω+1

∫
rR(ω+2)n

F�q0 (�x0, γ )G�q (�xω+1, η)

×
n∏

α=1

exp

{(
im

2h̄ε

) [
( �wα)

t
Tω �wα − ( �ρα)

t
S−1
ω �ρα

]}

×
n∏

α=1

exp

{(
im

2h̄ε

)
(�zα)t Sω�zα

}
d�x0 d�xω+1 d�z1 . . . d�zω

}
. (8.15)

Note that before the improper limits are taken on the integrals, the limits of integration on the
variables zαj are dependent on �x0 and �xω+1 due to the fact that �ρα is dependent on them. Thus,
we still cannot decouple the improper Riemann integrals.
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Let us take a look at the limits of integration more closely. Before the improper limits on
the integrals are taken in equation (8.15), we have

wn,ω+1

∫
O
F�q0 (�x0, γ )G�q (�xω+1, η)

n∏
α=1

exp

{(
im

2h̄ε

) [
( �wα)

t
Tω �wα − ( �ρα)

t
S−1
ω �ρα

]}

×
{∫

Ō

n∏
α=1

exp

{(
im

2h̄ε

)
(�zα)t Sω�zα

}
d�z1 . . . d�zω

}
d�x0 d�xω+1 (8.16)

where both O and Ō are *-compact and the boundary of Ō depends on �x0, �xω+1 and a set of
indices {J } such that as {J } → ∞, Ō → ∗

R
ωn in the *-transformed sense. The reason for the

Ō dependence on �x0, �xω+1 is due to the fact that �ρα is dependent on them (equation (8.11)) and
we performed the change of variables from equation (8.13) to equation (8.15). Furthermore,
the boundary of O is also indexed by a set similar to that of {J }. What we would like to do
is pass the {J } limits inside the O integral and decouple the improper Riemann integrals in
equation (8.15) into improper Riemann integrals in d�z1 . . . d�zω then d�x0 d�xω+1.

It is well known from the one-dimensional harmonic oscillator that

w1,k+1

∫
rRk

exp

(
im

2h̄ε
(zα)

t
Skz

α

)
dzα1 . . . dzαk =

( m

2π ih̄ε

)1/2
√

1

det Sk

. (8.17)

Let us fix an O. Since O is compact (see the construction in equation (3.12)). We can *-
transform and conclude from (8.16) and (8.17) that for any β ∈ ∗

R
+, there exists a fixed

M ∈ ∗
R

+ that depends only on O such that

∣∣∣∣wn,ω+1

∫
Ō

n∏
α=1

exp

{(
im

2h̄ε

)
(�zα)t Sω�zα

}
d�z1 . . . d�zω −

(( m

2π ih̄ε

)1/2
√

1

det Sω

)n ∣∣∣∣ < β

(8.18)

whenever all entries of {J } are bigger than M . In other words, because O is compact, for all
(�x0, �xω+1) ∈ O, equation (8.18) is true whenever all entries of {J } are bigger than a fixed M;
furthermore, this M depends on O.

Equation (8.18) allows us to use the *-Lebesgue dominating convergence theorem and
pass the {J } limits inside the O integral and decouples the improper Riemann integrals. Thus,
we have proved the following:

Theorem 8.2. For the harmonic oscillator,

K (�q, �q0, η, γ, t) = st

{
wn,ω+1

∫
rR(ω+2)n

F�q0 (�x0, γ )G�q (�xω+1, η)

×
n∏

α=1

exp

{(
im

2h̄ε

) [
( �wα)

t
Tω �wα − ( �ρα)

t
S−1
ω �ρα

]}

×
n∏

α=1

exp

{(
im

2h̄ε

)
(�zα)t Sω�zα

}
d�x0 d�xω+1 d�z1 . . . d�zω

}
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= st

{
wn,ω+1

{∫
rR2n

F�q0 (�x0, γ )G�q (�xω+1, η)

×
n∏

α=1

exp

{(
im

2h̄ε

) [
( �wα)

t
Tω �wα − ( �ρα)

t
S−1
ω �ρα

]}
d�x0 �xω+1

}

×
∫
rRωn

n∏
α=1

exp

{(
im

2h̄ε

)
(�zα)t Sω�zα

}
d�z1 . . . d�zω

}

= st

{(( m

2π ih̄ε

)1/2
√

1

det Sω

)n ∫
rR2n

F�q0 (�x0, γ )G�q (�xω+1, η)

×
n∏

α=1

exp

{(
im

2h̄ε

) [
( �wα)

t
Tω �wα − ( �ρα)

t
S−1
ω �ρα

]}
d�x0 �xω+1

}
. (8.19)

Proof. See above. �

It now remains to compute the last equality in (8.19).

Proposition 8.3. With the previously defined notation,

st



(( m

2π ih̄ε

)1/2
√

1

det Sω

)n

 =

( m

2π ih̄

)n/2
(

λ

sin λt

)n/2

. (8.20)

Proof. See [19]. �

Proposition 8.4. Let �x0, �xn = �y ∈ R
n be fixed. With the previously defined notation,

lim
k→∞

{
n∏

α=1

exp

{(
im

2h̄ε

) [
( �wα)

t
Tk �wα − ( �ρα)

t
S−1
k �ρα

]}}

= exp

{
im

h̄

λ

sin λt

[(�x2
0 + �y2

)
cos λt − 2�y �x0

]}
. (8.21)

Remark 8.5. Note that proposition 8.4 does not take place in the non-standard world.

Proof. This is just the classical version of the non-standard results obtained from [19] (see
[19] for more details). �

Proposition 8.6. With the previously defined notation,

st

{∫
rR2n

F�q0 (�x0, γ )G�q (�xω+1, η)

n∏
α=1

exp

{(
im

2h̄ε

)
( �wα)

t
Tω �wα − ( �ρα)

t
S−1
ω �ρα

}
d�x0 �xω+1

}

=
∫

R2n
F�q0 (�x0, γ )G�q(�y, η) exp

{
im

h̄

λ

sin λt

[(�x2
0 + �y2

)
cos λt − 2�y �x0

]}
d�x0 d�y.

(8.22)
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Proof. Using proposition 8.4 and Lebesgue’s dominating convergence theorem, we obtain

st

{∫
rR2n

F�q0 (�x0, γ )G�q (�xω+1, η)

n∏
α=1

exp

{(
im

2h̄ε

) [
( �wα)

t
Tω �wα − ( �ρα)

t
S−1
ω �ρα

]}
d�x0 �xω+1

}

= lim
k→∞

∫
R2n

F�q0 (�x0, γ )G�q(�y, η)

×
n∏

α=1

exp

{(
im

2h̄ε

) [
( �wα)

t
Tk �wα − ( �ρα)

t
S−1
k �ρα

]}
d�x0 d�y

=
∫

R2n
F�q0 (�x0, γ )G�q(�y, η)

× lim
k→∞

{
n∏

α=1

exp

{(
im

2h̄ε

) [
( �wα)

t
Tk �wα − ( �ρα)

t
S−1
k �ρα

]}}
d�x0 d�y

=
∫

R2n
F�q0 (�x0, γ )G�q(�y, η) exp

{
im

h̄

λ

sin λt

[(�x2
0 + �y2

)
cos λt − 2�y �x0

]}
d�x0 d�y.

(8.23)

�

Theorem 8.7. For the harmonic oscillator,

K (�q, �q0, η, γ, t) =
( m

2π ih̄

)n/2
(

λ

sin λt

)n/2 ∫
R2n

F�q0 (�x0, γ )G�q(�y, η)

× exp

{
im

h̄

λ

sin λt

[(�x2
0 + �y2

)
cos λt − 2�y �x0

]}
d�x0 d�y. (8.24)

Proof. Equation (8.24) follows from theorem 8.2, proposition 8.3 and proposition 8.5. �

Theorem 8.8. Let φ,ψ ∈ L1 ∩ L2, then for the harmonic oscillator Hamiltonian and for
0 < t < π/λ,∫

Rn

φ(�x)
[

exp

(−itH̄

h̄

)
ψ

]
(�x) d�x =

( m

2π ih̄

)n/2
(

λ

sin λt

)n/2

×
∫

R2n
φ
(�q0
)
ψ(�q) exp

{
im

h̄

λ

sin λt

[(�q2
0 + �q2

)
cos λt − 2�q �q0

]}
d�q0 d�q. (8.25)

Proof. Note that |K (�q, �q0, η, γ, t) | � Cn,λ,t . Substituting equation (8.24) in equation (1.3)
and using the Lebesgue dominating theorem on the η, γ limits give (8.25). �
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